

ОБЛАСТИ ПРИМЕНЕНИЯ Автомобилестроение

Оптимизация свойств покрытий

Соотношение между адгезией, поверхностным натяжение и коэффициентом распределения

Автор: Dr. Christopher Rulison (Augustine Scientific)

Оптимизация процесса нанесения покрытия включает контроль реологических и поверхностных свойств наносимого материала, а также свойств поверхности, в частности, ее свободную энергию. Ниже будут рассмотрены некоторые аспекты изучения поверхностной химии покрытий, используемых для окрашивания пластизольных материалов, из которых изготавливается большинство деталей интерьера автомобилей: панель управления, облицовка дверей, подлокотник и т.п. Пластизоли без поверхностной обработки (коронного разряда, пламени, плазмы и пр.) очень гидрофобны и имеют относительно низкую энергию.

Адгезионные свойства должны сохраняться как в короткий период, так и длительное время. *Коэффициент рас*текания покрытия по подложке определяет равномерность первоначального смачивания. Энергия слипания покрытия/подложки (известная также как работа адгезии) характеризует систему в коротком периоде, а *межфазное натяжение* между покрытием и подложкой – в длительном периоде. Любое изменение поверхности подложки или свойств наносимого материала приведет к изменению всех трех параметров. Задача технолога - оптимизировать эти параметры.

Поверхностные свойства пластизоля были охарактеризованы с помощью свободной энергии поверхности (СЭП), включающей в себя полярную и дисперсную составляющие, последние были определены согласно методу Фоукса на основе краевого угла смачивания дииодометаном и водой. Измерение краевого угла проводилось на приборе DSA100. Поверхностное натяжение наносимого материала (покрытие) исследовалось с помощью тензиометра К100. Для покрытия также определили его полярную и дисперсные части с помощью измерения краевого угла смачивания тефлоновой пластины.

Коэффициент растекания рассчитывается по формуле:

$$S = \sigma_{S} - \sigma_{L} - \sigma_{SL}$$

Энергия слипания (работа адгезии) рассчитывается по формуле:

$$E_{\Lambda} = 2(\sigma_{S}^{D}\sigma_{I}^{D})^{1/2} + 2(\sigma_{S}^{P}\sigma_{I}^{P})^{1/2}$$

 $E_{_A} = 2 \big(\sigma_{_S}^{_D} \sigma_{_L}^{^D} \big)^{\!1/2} + 2 \big(\sigma_{_S}^{^P} \sigma_{_L}^{^P} \big)^{\!1/2}$ Межфазное натяжение на границе пластизоль/покрытие определяется по формуле:

$$\gamma_{SL} = \sigma_S + \sigma_L - 2(\sigma_S^D \sigma_L^D)^{1/2} - 2(\sigma_S^P \sigma_L^P)^{1/2}$$

где σ_{S} , σ_{S}^{D} , σ_{S}^{P} – общая, дисперсная и полярная части свободной поверхностной энергии пластизоля, а σ_{L} , σ_{L}^{D} , σ_{L}^{P} общая, дисперсная и полярная части поверхностного натяжения покрытия.

Изначально для оформления внутреннего пространства автомобиля имелось два типа цветного покрытия: цвет олова и темно-серый. Покрытия имели значительные различия в рецептуре, в частности в типе пигментов и их стабилизаторов, однако исходным растворителем в обоих случаях был бутанон (метил-этил-кетон).

Покрытие цвета олова работало очень хорошо, как при первоначальном нанесении, так и по истечении короткого/длинного промежутка времени. Однако покрытие темно-серого цвета уже по истечении одной недели применения стало отслаиваться от пластизоля.

В обоих случаях коэффициент растекания был выдержан согласно установленному правилу, принятому зарубежными производителями покрытий: поверхностное натяжение покрытий было на 10 мН/м ниже, чем энергия поверхности пластизоля. Оба покрытия имели примерно одинаковые поверхностные натяжения (см. табл.), но несмотря на это они по-разному взаимодействовали с подложкой.

Для характеристики системы был использован описанный выше метод, результаты исследования поверхностных свойств пластизоля и покрытий приведены в таблице:

	Подложка	Покр	Покрытие	
	пластизоль	цвета олова	темно-коричневое	
Общая энергия поверхности, мДж/м ² (Поверхностное натяжение, мН/м)	36,04	26,74	26,53	
Полярная часть (мДж/м²)	4,49	2,81	9,17	
Дисперсная часть (мДж/м²)	31,55	23,93	17,36	
Полярность (%)	12,45	10,52	34,57	
Энергия прилипания к пластизолю, мДж/м ²		62,06	59,64	
Межфазное натяжение, мН/м		0,72	2,93	
Коэффициент растекания, мН/м)		8,58	6,58	

Оптимизация свойств покрытий

Как показало более детальное исследование, покрытия сильно различаются по полярности, при этом полярность покрытия цвета олова ближе к полярности пластизоля, и как результат, более низкое межфазное натяжение на границе подложка/покрытие и более высокая энергия прилипания и коэффициент растекания. Хотя коэффициент растекания и энергия прилипания для темно-коричневого покрытия были допустимы, но адгезия в длительный период времени — нет, т.е. межфазное натяжение на границе раздела фаз сыграло решающую роль.

Для покрытий часто встречается ситуация, когда энергия слипания порядка 65 мН/м, коэффициент растекания не больше 8 мН/м, а межфазное натяжение 1-2 мН/м. То, что мы только что наблюдали для темно-коричневого покрытия.

В первом варианте изменили подложку (пластизоль) с помощью обработки коронным разрядом. В результате такой обработки поверхность стала более полярной; при этом наибольший эффект был, когда полярность поверхности (31,25%) приблизили к полярности покрытия (34,57%). Свойства приведены в таблице ниже:

	Пластизоль, обработанный	Покрытие
	коронным разрядом	темно-коричневое
Общая энергия поверхности, мДж/м ² (Поверхностное натяжение, мН/м)	41,05	26,53
Полярная часть (мДж/м ²)	12,83	9,17
Дисперсная часть (мДж/м ²)	28,22	17,36
Полярность (%)	31,25	34,57
Энергия прилипания к пластизолю, мДж/м ²		65,97
Межфазное натяжение, мН/м		1,61
Коэффициент растекания, мН/м)		12,91

Обработка коронным разрядом привела к улучшению адгезионных свойств темно-коричневого покрытия в длительном периоде и увеличению энергии слипания.

Однако хотелось, чтобы покрытие показывало отличные смачивающие свойства в течение всего процесса, т.е. необходим был высокий коэффициент растекания. Сделать это только за счет увеличения общей энергии поверхности пластизоля (с помощью обработки коронным разрядом) невозможно.

В конечном счете, по согласованию с производителями покрытий был несколько изменен композиционный состав покрытия (тип растворителя), в результате полярность нового темно-коричневого покрытия снизилась до 20,06%, что значительно ближе к полярности необработанного пластизоля (12,45%).

	Пластизоль	Измененное покрытие темно-коричневое
Общая энергия поверхности, мДж/м ² (Поверхностное натяжение, мН/м)	36,04	26,12
Полярная часть (мДж/м ²)	4,49	5,24
Дисперсная часть (мДж/м ²)	31,55	20,88
Полярность (%)	12,45	20,06
Энергия прилипания к пластизолю, мДж/м ²		61,03
Межфазное натяжение, мН/м		1,13
Коэффициент растекания, мН/м)		8,79

Таким образом, обработку пластизоля можно исключить, т.к. проще изменить композиционный состав покрытия, что значительно легче для производителя и дает превосходные результаты. Новое темно-коричневое покрытие на деле оказалось даже лучше в отношении адгезионных свойств в длительный период (о чем свидетельствует межфазное натяжение: 1,13 мН/м — после изменения покрытия и 1,61 мН/м — после изменения поверхности). Начальная адгезия покрытия к поверхности, хоть с ней и не было проблем, осталась на высоком уровне, а растекание стало аналогично растеканию покрытия цвета олова, о чем свидетельствуют равенство их коэффициентов растекания.

Приведенный выше пример показал важность таких параметров как коэффициент растекания, работа адгезии и межфазное натяжение, а также взаимосвязь между ними. Знание поверхностного натяжения и свободной энергии поверхности не достаточно для решения проблем равномерного нанесения покрытий и их долгосрочной службы; необходимо также знать полярные и дисперсные силы, что можно определить с помощью приборов KRUSS. Зачастую бывает трудно модифицировать поверхность, на которую наносят покрытие, и значительно легче изменить свойства самого покрытия.

Полагают, что для покрытий с большим содержанием растворителя (в приведенных примерах было до 45% бутанона), поверхностные свойства бесполезны для решения возникающих проблем. Однако в ходе исследований были выявлено также влияние и других частей системы: пигментов, стабилизаторов и т.п., на поведение покрытия. Таким образом, только целостное изучение композиций и учет всех факторов не всегда, но часто, может привести к полному пониманию поведению систем.